Is Every Matrix Similar to a Toeplitz Matrix?
نویسندگان
چکیده
We show that every n × n complex nonderogatory matrix is similar to a unique unit upper Hessenberg Toeplitz matrix. The proof is constructive, and can be adapted to nonderogatory matrices with entries in any field of characteristic zero or characteristic greater than n. We also prove that every n× n complex matrix with n ≤ 4 is similar to a Toeplitz matrix.
منابع مشابه
An application of Fibonacci numbers into infinite Toeplitz matrices
The main purpose of this paper is to define a new regular matrix by using Fibonacci numbers and to investigate its matrix domain in the classical sequence spaces $ell _{p},ell _{infty },c$ and $c_{0}$, where $1leq p
متن کاملWeighted slant Toep-Hank Operators
A $it{weighted~slant~Toep}$-$it{Hank}$ operator $L_{phi}^{beta}$ with symbol $phiin L^{infty}(beta)$ is an operator on $L^2(beta)$ whose representing matrix consists of all even (odd) columns from a weighted slant Hankel (slant weighted Toeplitz) matrix, $beta={beta_n}_{nin mathbb{Z}}$ be a sequence of positive numbers with $beta_0=1$. A matrix characterization for an operator to be $it{weighte...
متن کاملThe reconstruction of an hermitian toeplitz matrix with prescribed eigenpairs
Toeplitz matrices have been found important applications in bioinformatics and computational biology [5-9, 11-12]. In this paper we concern the reconstruction of an hermitian Toeplitz matrices with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toe...
متن کاملOn the Eigenstructure of Hermitian Toeplitz Matrices with Prescribed Eigenpairs
Toeplitz matrices have found important applications in bioinformatics and computational biology [5, 6, 11, 12]. In this paper we concern the spectral properties of hermitian Toeplitz matrices. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, we first consider the eigenstructure of hermitian Toeplitz matrices and then disc...
متن کاملEvery Matrix is a Product of Toeplitz Matrices
We show that every n × n matrix is generically a product of n/2 + 1 Toeplitz matrices and always a product of at most 2n + 5 Toeplitz matrices. The same result holds true if the word ‘Toeplitz’ is replaced by ‘Hankel,’ and the generic bound n/2 + 1 is sharp. We will see that these decompositions into Toeplitz or Hankel factors are unusual: We may not, in general, replace the subspace of Toeplit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999